
Solución a “Velocidad promedio de las 
moléculas de un gas”

Enunciado:

Solución:
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Llamemos k=
−M
2RT

 y calculemos ∫ v3⋅ek⋅v
2

dv

Para calcular dicha integral indefinida sustituiremos u=k⋅v2⇒ v2=
u
k

 e integraremos por 

partes:

du=2kv dv⇒ v dv= du
2k

 y por tanto:
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2k2
⋅∫u⋅eu⋅du

Ahora integramos por partes ∫u⋅eu⋅du:

Sea w=u ; dz=eu⋅du ; por tanto: dw=du ; z=eu.
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Luego: ∫u⋅eu⋅du=u⋅eu−∫ eu⋅du=u⋅eu−eu=eu⋅(u−1)+C1
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Como k=
−M
2RT

 y

• M (peso molecular de un gas): El peso molecular de un gas es una propiedad física que siempre es positiva. 
Representa la masa de un mol de la sustacia.

• R (constante universal de los gases): La constante universal de los gases (R) es un valor positivo. 
• T (temperatura Kelvin del gas): La temperatura en la escala Kelvin siempre es positiva. El cero absoluto (0 K) 

es la temperatura más baja posible, y cualquier otra temperatura será mayor que cero.

resulta que k<0 y por tanto: lim
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Dicho límite, sustituyendo, sale: lim
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Finalmente: v̄= 4

√π
⋅( M2RT )

3
2⋅2R

2T 2

M2 = 4

√π
⋅√ RT2M=√ 16 RT2M π

 (velocidad promedio)

https://profematesjac.wordpress.com/ 

https://profematesjac.wordpress.com/

